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Abstract Materials that mimic or extend the properties of natural molecules are being developed for medical 
applications. Recent breakthroughs in genetic engineering, polymer synthesis, molecular self-assembly and related 
areas are greatly expanding the variety of structures available for use in physiological settings. o 1994 WiIey-Liss, Inc. 
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Biomolecular materials mimic or extend the 
properties of molecules found in nature. They 
are manufactured by using biological processes, 
such as gene expression in heterologous cells, or 
by technologies, such as organic synthesis, that 
are capable of producing biomimetic structures. 
Sophisticated approaches, e.g., the site-direct- 
ed chemical modification of genetically engi- 
neered proteins, combine biological and chemi- 
cal synthetic methods. Biomolecular materials 
will contribute in the search for new materials 
for improving human health. In a confusing 
distinction, materials that contact the body are 
known as biomaterials and need not necessarily 
incorporate biomolecular materials! Examples 
of biomaterials that are being sought today in- 
clude components for artificial organs (includ- 
ing extracorporeal devices) orthopedic materi- 
als, resorbable sutures and tissue scaffolding, 
controlled release and encapsulation systems, 
and probes for biosensors. 

Brief consideration of just one aspect of bioma- 
terials, surface coatings, immediately generates 
an extensive list of requirements. Such demands 
are challenging the ingenuity of materials scien- 
tists. Coatings are required for implants, sen- 
sors and encapsulation. They must have appro- 
priate physical properties including the desired 
wettability, porosity and elasticity. The exposed 
surface of a coating may need to be adhesive or 
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not adhesive, depending on the application. Simi- 
larly, the coating may be required to be long- 
lived (70 years or more) or short-lived (resorb- 
able). Often, biologically inert surfaces are 
needed to prevent blood coagulation, or protein 
and bacterial adsorption. Alternatively, bioac- 
tive surfaces may be necessary including those 
that release antibacterial agents or guide the 
movement of cells. Applications of coatings with 
enzymatic or transport activity, perhaps spa- 
tially organized in two-dimensions, can be envis- 
aged. Surfaces that attach to target cells or, 
more futuristically, actively participate in find- 
ing them will also be valuable. 

Why might biomolecular materials be suited 
to these tasks? Certainly, nanofabrication of 
inorganic materials is now being extended to the 
atomic level. But, by comparison with even the 
most finely machined inorganics, biomolecules 
(natural or engineered) are highly sophisticated. 
For example, they can recognize other mol- 
ecules and modify or translocate them. These 
properties emerge in the size range of a few 
nanometers and above. Further, many of the 
traits desired for biomaterials are “biological” 
(e.g., bacteriostatic surfaces), which is hardly 
surprising as the materials are to be used in a 
physiological setting. In several cases biomateri- 
als must form an interface between the physi- 
ologic and the synthetic. It is now feasible to 
generate such interfaces at the molecular level. 
For example, a combined chemical and genetic 
synthetic route to polyethylene-protein hybrids 
can be readily outlined. A much touted asset of 
biomolecular materials is their ability to self 
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assemble into organized arrays, which is, of 
course, a property of many naturally occuring 
molecules, e.g., viral coat proteins. Self-assem- 
bly is important both for the manufacture of 
biomolecular materials and in determining their 
properties (consider for example the uniform 
size of biological pores). Finally, prospects ap- 
pear favorable for molecular devices that will 
allow synthetic structures to  respond to  their 
environment (e.g., by expansion and contrac- 
tion) or even to move around the body. Perhaps, 
useful man-made self-replicating structures [Tji- 
vikua et al., 19901 are not as far-fetched as some 
critics would have us think. 

Returning to the present, the self assembling 
materials discussed at this meeting are all simple 
membrane-based systems. Nevertheless, their 
potential utility is wide-ranging. For example, 
their properties impact several of the require- 
ments for coatings outlined earlier. Uwe Sleytr 
described bacterial Slayers. These membranes 
are entirely devoid of lipid and contain large 
pores. Demonstrated applications include ultra- 
filtration and the immobilization of molecules, 
especially other proteins, in ordered arrays. By 
contrast, Alan Rudolph described structures that 
are entirely lipid-based including liposomes as 
carriers for proteins, microcylinders for the con- 
trolled release of bioactive peptides, and the 
patterned deposition of lipids for controlling cell 
adhesion. Between these extremes, this author 
described a pore-forming protein that can as- 
semble into preformed bilayers. The power of 
molecular genetics has been used to produce 
pores with altered properties, including those in 
which assembly can be controlled by external 
stimuli. Clearly, aspects of these three systems 
might be combined to produce yet more intricate 
materials. For example, as suggested by Sleytr, 
S-layers might be used as a supports for other 
membranes, including those containing geneti- 
cally engineered pores. 

Quite different self-assembling systems are 
being explored by others and it is likely that 
many of them will ultimately make an impact in 
biomaterials. Crosslinked enzyme crystals pro- 
vide extremely robust catalysts with potential as 
components of implants for correcting genetic 
enzyme deficiencies [St. Clair and Navia, 19921. 
Biomimetic ceramics, such as “organoceramics” 
[Messersmith and Stupp, 19921, may be useful 
in bone replacement. Considerable effort is be- 
ing put into the molecular genetics of silks 
[Kaplan et al., 19943. Engineered silks to which 

bacteria cannot adhere would have surgical ap- 
plications. A novel detection device for influenza 
virus is based on a spectral shift in a chromo- 
phoric Langmuir-Blodgett film, which extends 
surface sialic acid residues that bind the virus 
[Charych et al., 19931. This ultimately compact 
detector could be adapted for a variety of ligands 
and incorporated into “smart” implants. 

Recent breakthroughs in biotechnology will 
soon produce many more biomolecular materi- 
als with applications in medicine. Genetic engi- 
neering, which is capable of producing virtually 
any protein, including chimeric molecules, is 
being extended by combining mutagenesis with 
chemical modification [Hilvert, 19911. Further- 
more, unnatural amino acids [Noren et al., 19891 
and unusual backbone structures [Ellman et al., 
19921 can now be introduced during enzymatic 
protein synthesis, while both nucleic acids 
[Nielsen et al., 19911 and polypeptides [Borman, 
19931 are being mimicked by organic synthesis. 
Nanostructure synthesis is being extended into 
three dimensions by using self-organizing build- 
ing blocks [Whitesides et al., 1991; Philp and 
Stoddart, 19911, including oligonucleotides [See- 
man, 19931 and smectogens [Stupp et d., 19931. 
Polymeric surfaces that recognize molecules are 
being produced by molecular imprinting 
[vlatakis et al., 19931, while the use of combina- 
torial libraries (both genetic and chemical) [Birn- 
baum and Mosbach, 19921 and in amenable cases 
in vitro evolution [Szostak, 19931 is revolution- 
izing the screening and selection of new mol- 
ecules, which include catalytic antibodies [Le- 
rner et al., 19911 and nucleic acids [Symons, 
19921. Further, control over the activity of mate- 
rials is now being achieved with built-in triggers 
and switches [Adams and Tsien, 1993; Higaki et 
al., 19921. Add to this the development of molecu- 
lar machines, ranging from relatively simple 
elastic materials that respond to the environ- 
ment [Urry, 19931 to motile structures [Mac- 
nab, 19921, and the prospects for biomaterials 
seem limitless. 
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